k^2=4+3k

Simple and best practice solution for k^2=4+3k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k^2=4+3k equation:



k^2=4+3k
We move all terms to the left:
k^2-(4+3k)=0
We add all the numbers together, and all the variables
k^2-(3k+4)=0
We get rid of parentheses
k^2-3k-4=0
a = 1; b = -3; c = -4;
Δ = b2-4ac
Δ = -32-4·1·(-4)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-5}{2*1}=\frac{-2}{2} =-1 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+5}{2*1}=\frac{8}{2} =4 $

See similar equations:

| -6w+10=2(w+9) | | r^2+8r=-7 | | -7/8(1/8)x-3/4=20 | | 9(u-3)=3u+27 | | k^2-12k=-32 | | 3x+54=-3x+18 | | (2y+2)+(3y+3)=90 | | 78=6x+3(-6x-6) | | (3x+20)+(9x+5)+(2x+13)=180 | | x8-6=3 | | 5x-10=6x-x-2-x+3 | | -8x=-16x+16 | | (2x-6)(3+4)=8x2-2x+2 | | 110=3x^2+7x | | 3x+2=x−2, | | 1.89=6.2z | | 6x+x=4(x+3) | | 9x=8x-4x-5=21 | | 1+8(x+1)=5+8x+2x | | -5x+-1=4 | | 9x-(8+90x) = -656 | | m/10=5 | | 78=6x=3(-6x-6) | | 51+6x=3(-x+7)-33 | | 6(2a-3)+10=5(a-3) | | (5x-14)+(x+32)+(3x+2)=180 | | -20=-36+32p | | AN=w2+4w | | 7x+12+3x=–6(x–7)+9x | | 8=3w+2 | | -6x-3(-7x-20)=-90 | | 0.4(x+0.7)=0.6x-9.2 |

Equations solver categories